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Abstract. This note discusses the asymptotic behavior of a class of M - estimators in linear

models when errors are Gaussian, or a function of Gaussian random variables, that are long

range dependent. The asymptotics are discussed when the design variables are either i.i.d.

or long range dependent, independent of the errors, or known constants. It is observed that

the class of M - estimators of the regression parameter vector corresponding to skew

symmetric scores and symmetric errors asymptotically behave like the least squares

estimators. Moreover, in these cases, if the design variables are either ii.d. or known

constants then the limiting distributions are Normal. But if the design variables are also

long range dependent then the limiting distributions are nonnormal.
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1. Introduction and Summary. A discrete time stationary stochastic process is said to be

long range dependent if its covariances decrease to zero like a power of lag as the lag tends

to infinity but their absolute sum diverges. Such processes arise in applications in

Hydrology, Economics, Time Series Analysis and other sciences. See, e.g., the review paper

by Mandelbrot and Taqqu (1979) and references therein for the importance of these

processes. See Granger and Joyeux (1980), and Hosking (1981) for the usefulness of these

processes in Economics and Time Series Analysis. For many technical results on these

processes, see Taqqu (1975, 1979), Fox and Taqqu (1987) and Dehling and Taoqqu (1989),

and Yajima (1985, 1988), among others.

One of the popular class of estimators in linear models that has evolved over the last

two and a half decades is the so called class of M - estimators. Most of the asymptotic

literature on these estimators assumes either independent errors (Huber: 1981 and

references therein) or weakly dependent errors, like strongly mixing, as in Koul (1977).

Because of the importance of both, M - estimators and the long range dependence, it

is of interest to study the large sample behavior of these estimators in a linear regression

setting when errors are either long range dependent Gaussian or functions of such random

variables (r.v.'s). About the design variables in the linear model we shall assume that they

are either r.v.'s or known constants. In the former case it will be further assumed that the

design variables are independent of the errors and either i.i.d. or long range dependent.

The case of the known constant designs will be discussed in Section 3. We shall for the

time being restrict our attention to the case of random designs.

Accordingly, let qj, q2,.., be a sequence of strictly stationary mean zero unit

variance Gaussian r.v.'s with p(k) := Elk+l, k > 0. Let 1 2'"" be a sequence of

observable pxl stationary mean zero random vectors with I(k) := ECll+k, k > 0.

Consider the linear model

i=X Xi = (1, , E Ap+l, i> 1
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where i = G(/i), i > 1, G a measurable function form A to A.

Note that the marginal distribution of c need not be Gaussian. In fact if one were to

have a linear regression model with stationary errors whose marginal distribution function

(d.f.) is F, then choosing G = F-1 (4) would yield the desired errors. Here 4 is the d.f. of a

N(0,1) r.v. and F-1(u) = inf{x; F(x) u}, 0 < u < 1.

The class of M - estimators, one corresponding to each ', is defined as a solution

of the equation

N
(2) S(t) := X iV(Yi-Xit) = 0

i=1

where 0 is a measurable function from A to A with

(3) EV(c) = 0, 0 < Eg' 2 () < 00.

Here, and in the sequel, ql, c, etc. are copies of 771, (1, C1 etc. Als, for a p,,1

vector t E AP, t' will denote its transpose and 11thl will stand for its Euclidean norm.

The present paper is concerned with investigating the large sample behavior of M -

estimators when the r.v.'s {7i}, in addition, satisfy

(4) p(k)=k 1 L1 (k), 0<D 1 <1,k > 1

where Ll(k) is positive for large k and slowly varying at infinity, i.e., Ll(tx)/Ll(t) - 1

as t -- oo for every x E A.

About {4i we shall additionally assume that

(5) { 4i are independent of I ci

and either

(6a) C1 I 2'.... are i.i.d. r.v.Is

or
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(6b) {i} are dependent with P(k) = k 2/(k), 0 < D2 < 1,

where .X' is a pxp matrix of slowly varying functions at infinity and V(k) are positive

definite for all large k.

The processes that have covariances like (4) or (6b) are called long range dependent.

These covariances tend to zero but not fast enough so as to be summable.

In the case when errors are independent or weakly dependent, AN(ON - 0) turns out

to be asymptotically normally distributed where AN equals N" in the case {i} are i.i.d.

r.v.'s or AN equals (X X)2 in the case {i} are the known constants. Here X'X =

N

i=1

Recall that the way this result is proved is first to approximate O - 0
N 1

by { E XiX i 7'(i)} -1 S(f ). Then, by the LLN's, the first term in this approximation is
i=l

seen to be of the order N- 1 and this N- 1 is split so as to stabilize S(fl) and #N - fl In the

case the errors are independent or weakly dependent and the design variables are random,

th.e scores S(P) are of the order 0 p(N 1 /2) and hence one must have AN = Ni / 2 . Note

that, in view of the Ergodic Theorem, the first term in the above approximation is

Op(N - 1 ) as long as the summands I  ¢'(ci)} are stationary, ergodic, have finite first

moments and {E[XlX 1  '(1)]} - 1 exists, regardless of whether the r.v.'s are long range

dependent or not. Hence, even in the present case, the magnitude of S(P) determines that

of O- N . The exposition in Section 2 below uses this observation. A similar observation

is used in Section 3 when the design variables are the known constants.

One of the observations of this note is that the class of M - estimators corresponding

to the skew symmetric scores and symmetric errors (i.e. skew symmetric G) asymptotically

behaves like the least squares estimator under (6a) or (6b) or the known constant design

case. This result, in the cases of (6a) and (6b), is stated and proved in Section 2 and in the

other case, in Section 3, below. A similar observation was made by Beran and Kunsch
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(1985) in connection with the one sample location model. We further observe that in these

cases if the design variables are either i.i.d. or known constants then the limiting

distributions are Normal. But if the design variables are also strongly dependent and there

is no intercept parameter in the model then the the limiting distributions are nonnormal

and appear at the end of Section 2.

In what follows, L, with or without suffix is a generic notation for a slowly varying

function. All limits are taken as N - oo, unless mentioned otherwise. Also in most of our

discussion the design variables need not be Gaussian.

2. The Case of Random - Designs. A preliminary result needed for obtaining a first order

approximation to M - estimators is the asymptotic uniform linearity of S. The following

theorem gives a set of sufficient conditions for such a result to hold. It also gives the

required approximation to M - estimators. The statement of the Theorem is somewhat self

contained.

Theorem 1. Let ( 1 l), ( 2' (2) be a strictly stationary sequence of random vectors with

i beingpxl. LetX i = (1,fi),

Y=i Xi#+Ei, forsomefEAP+li>l.

In addition assume the following-

(a) The score function g satisfies (1.3) and is absolutely continuous with a.e. derivative
i/" satisfying El I*'! < oo, and,

EJX 1II I 0(( - zIIXlI) - 01( )I - 0 as z -- 0.

(b) For N > p+1, there are sequences {AN} and {BN} of(p+1)x(p+1) matrices which are

positive definite for sufficiently large N and satisfy

(i) IIBN 111- 0, IIANl1-- 0, N-INAIN 111 . JBN 1 .

(ii) JIBN.S(P)1 =Op(1),
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Then, for every 0 < b < oo,

(1) E sup JI BNI[S(P+ AN 1A) - S()] + BN Xi Xi 01 '(ci)A N 1A = Op(1)

[{A[{<b i

where S is as in (1.2).

In addition, if {i} are independent of {ci} and if EIIII2 < oo, then the random

coefficient of A in the linear expansion (1) may be replaced by R.Eg'(c) where

R:= EX 1X 1 .

Furthermore, if

(c) R -1 exists, and d) 0 < E'(c),

then

(2) AN(i N - P) = [R E0, (c)] -.B NS(fl) + Op(1).

Remark 1. It is perhaps worth repeating that in the above theorem neither {i} nor {ci}

need be Gaussian or functions of Gaussian r.v.'s.

Proof From the definition of S, S(#3 + ANA) = E Xi (i - X1 AN 1 A). Now use the

definition of absolute continuity and routine arguments to get that the

IIA N111
L.H.S.(1) _ b E E IIBN1 XiHI IJXiJI f 10 '(c-z IXi11b) - 0'(c)Idz

hAN- 1

I hANII11X1 112
~bN 11B-N 1I11.I11A N1.fIEX I V"((eZIIX 1I~b) -V) ..... 0,

by (a) and (b)(i).

The claim about replacing BI Ni XiXi0'(f i )AN I by R.Eo'(c) follows from the

Ergodic Theorem. The claim (2) is obtained from (1), (a)(ii), (c) and (d), with the help of

Scheweder fixed point Theorem, just as in Huber (1981). o
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Remark 2. Observe that O(x) H x a priori satisfies (a). Another example of 0 satisfying (a)

is the Huber function O(x) := xI( lxi Ic) + c sgn(x), c > 0, provided {4I} are independent

of {ci}, EIl[lI2 < oo, and F is continuous at ±c. To see this observe that for this 0 the

L.H.S.(a) < EIIX 1I2 {[F(c+zlX 1 ) - F(c-zlXII] + [F(-c+zllXll[) - F(--c-zljXjlI)]}.

Now the Dominated Convergence Theorem gives the claim. o

Observe that so far we have not used (1.4) or (1.6a) or (1.6b) or even the assumption

about {i } being Gaussian. We shall now use these assumptions to determine the

sequences of matrices {AN} and {BN}. The main requirement on BN is (b)(ii). Once

BN is determined, AN can be determined from (b)(i).

In order to assess the magnitude of S (write S for S(fl)) we shall use the Hermite

expansion of L2 ( A; d(I) functions. What follows about Hermite expansions etc. is

borrowed from Feller (1971) and Taqqu (1975). With {H q 0} denoting the Hermite

polynomials, let Jq := Eol(q)Hq(q) , where 01 = V(G). Let m := min{q l, J # 0}

denote the Hermite rank of 01(q,). The Hermite expansion of rank m of 01 (q1 ) is given by
cJ
E q1 Hq().

q=m

Recall from Feller (1971) that {Hq (i)} is a set of orthonormal r.v.'s in L2 (A; d 4)

satisfying

(3) H0(x) - 1, EHq(q) = 0, q _ 1;

EHq (qi)Hn( J) q V n
qpq(ij), q = n

Now, we begin the argument for determining BN and AN. For a A E Rp + I write A'

(A1,A2 ), A1 E A , A2 E A#P. From (1.5) and (3), V A E Ap+l
2)N 2

t m(,7i)N2 212
(4) E[A E XHi  ()= m E E [A + A2 r(i-j) A2 1pm(i-j).

i i=l j=1
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At this point we need to consider (1.6a) and (1.6b) separately.

Suppose that (1.6a) holds. Then the

RHS(4) = m![A 2 E. pm(i-j) + A2A2 N]
1i J

Now, if we restrict D1 < 1/m, then from Taqqu (1975; Lemma 3) it follows that the
2-mD1

RHS(4) _c A 2 N 1L(N) + m! A2A 2 N.

where cI is a constant depending on D and m. Thus in this case if we choose

0H1
N L(N) 0 1xp 1 bNl sy

0Px N1 pxpj 0 BN2

with 2H1 = 2-mD1 , then we see that

(6) E(AB N 'E XiHm(i)) 2 = 0(1) V A E AP I
i

We note that D 1 < 1/m implies that ( i) are also long range dependent. The case

D1 ? 1/m would yield that these r.v.'s are asymptotically weakly dependent and not

interesting to us from the current point of view.

Now suppose that (1.6b) holds. Then the
2 -mD 1 i)' -D(2i-mD 1

RHS(4) m![A i-jI L(i-j) + E A2
1j i 2

Note that .X being a matrix of slowlv varying functions at infinity and that dV(k) being
positive definite for all large k, it follows that for every A2 E AP , A2 ' 2 is slowly

varying at infinity and that A2 d(k) A2 > 0 for all large k and for every A2 E AP.

Once again, use the arguments as in Taqqu (op cit.) to conclude that the

R.H.S.(4) 2 2-mD1  t 2-mD1-D2c1AIN + c2 A(N) A2 N
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provided we assume

(7) 0 < D1 < 1/m, mDI+D 2 < 1, 0 < D2 < 1.

Here c1 and c2 are constants depending on m, D1 and D2 . Thus a choice of BN here is

HI1
N= 112 i L say

(8) BN 0pl 0 ]0 BN2

with H1 as in (5) and 2H2 = 2 - mD1 -D 2.

With this BN, one can again verify that (6) above holds in this case. Note that (7)

implies

(9) 1/2 < H < 1, 1/2 < H 2< 1.

Next, in view of (1.3), (1.5) and (3), V A E Ap+l

1'-1 12 1 02E[A B E Xi{Jl(7i) - m Hm(i)}]= E{E A B 1 X E HN i i q=m+l q

j2 B-1 -BN
1 A . p j)

-~ -EAEB XiXiB

q=m + l "i j

D B " 0 B m+1
<- A - r-B" (i-j) 1.

q=m i j

(10) -40

by arguing as in Taqqu (1975, p. 294), under both (1.6a) of (1.6b), using BN as in (5) or in

(8), as the case may be.

Combining (5), (6), (8), and (10), one sees that under either (1.6a) or (1.6b) (with

BN as in (5) or as in (8), respectively) one has, by (3),
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Var(A BN 1  Xiol(ni))
i

Var[E (A'B-1lXi){ (r(i) - m--'- Hm(rqi)}] + Var[m-- -m .E(A B-lXi)Hm(r/i) ]

- o(1) + 0(1) = 0(1).

This then determines BN and verifies the assumption (b)(ii) of the Theorem 1 above when

{ i }, {i} I are as in (1.1), (1.4), (1.5), (1.6a) or (1.6b). Now, if BN is given by (5),

then

A N N1-H L(N) 0 aN1 0 say(11) AN = [H(N :h~]= [~ N]' say,

N 21 x 0 A N 2 .

will satisfy (b)(i). If BN is given by (8), then

1-H1

(12) AN N 0H2 L(N) aN1 0 say,
0 N 2Ipxp  0 AN 2

will satisfy (b)(i), with H1 and H2 as in (5) and (8) satisfying (9).

The above discussion is now summarized as

Theorem 2. Let {Yi}, {fi4 }, /i, satisfy (1.1), (1.3), (1.4), (1.5), and (1.6a) or (1.6b).

In addition assume that 0 is nondecreasing satisfying (a) of Theorem I with 0 < Eg'(c).

Then, with 13N defined as a solution of(1.2),

1 1 Jm
AN(ON-0 = [R E0'()f] BN E XiHm(ji) -- + 0p(1).

where BN, AN are as in (5), (11), ((8), (12)) in the case of(1.6a) ((1.6b)).
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Remark 4. Hermite rank m of 01. Often the function 0 is chosen to be skew symmetric,

viz, ,(-x) = ,(x). Thus if G is also skew symmetric then V)(-x) = (G(-x)) = (-G(x))

-O(G(x)) R -,,l(X). In such cases, using the fact that Hq (-x) = (1)qH q(x) for all q, we

have

Jq= Eol(q()Hq(17) = [l+(-1)q+l]-E{fl,(r)Hq(7)I(q > 0)} 0 0, q = 1.

Therefore, m = 1, J 1 = 2 E{VO(iq)RiI(Ri>0)}, Hi(q) = q/ and, from Theorem 2,

(13) AN(JN-fi) = [R E'(c)]-. BN1 Xi i J +0M(1).
N( N .11* ip

Now let PN be the least squares estimator of f# in (1.1). Then carrying out an

analysis like the above one can derive the following:

If EG(ij) = 0, 0 < EG 2(i() < o and G is skew symmetric, then

AN(O N -f) N-1. B 1 .Xiri. "I + op(1),

where al = EG(q)n/ where AN and BN are the same as in (13).

The r.v. EXir/i is precisely the leading term in the least squares estimator of the

regression parameter with the errors I qi} and the design vectors {Xi}. Thus it follows that

the above class of M - estimators corresponding to the skew symmetric scores and

symmetric errors are asymptotically like the least squares estimators regardless of whether

the errors are Gaussian or not.

Now, suppose that there is no intercept parameter in (1.1). Then the result like (13),

with Xi replaced by i, AN, BN replaced by AN 2, BN 2 of (5) and/or (8) remains valid.

Of course now ON is pxl as is /. Note that in the case of (1.6a),

N2 Eir/i = N'.(A 4i)i => Np(0, Al A), V A E
i 1

where r = r(0) = ECI(I.
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But in the case of (1.6b) the limiting distribution is different. To determine this

limiting distribution, we use Theorem 6.1 of Fox and Taqqu (1987). Observe that if {1i}

are long range dependent and Gaussian then so are the r.v.'s {A t i} for every A E AP

with the same exponent D9 as in (1.6b). Now, take Xi and Yi in Theorem 6.1 of Fox

and Taqqu to be A Ci and qi, respectively. One then sees that (1.4), (1.5) and (1.6b)

together with the Gaussianness assumptions imply all the conditions of that Theorem for

every A. Hence,

ABN1 E Cii = N L(N) E (A Ci) i => Z(1).(A'rA)2
N2 i i

with Z(1) obtained from (6.1) of Fox and Taqqu after t is set equal to 1 in there. o

3. The Case of Non - Random Designs. In order to seperate this case from that of the

random designs, we shall now denote an Nxp design matrix of known constants by C

and its ith row by CNi, 1 i < N. Consider the linear regression model where one observes

(YNil satisfying

(1) YNi = CNifl + 'Ei' I < i <N, A 5 p ,

with {Ici} as in (1.1).

Throughout we shall assume that

(L1) (C'C)- 1 exists for all N > p.

The class of M - estimators ON is defined as a solution t of

(2) T(t) := CNi(YNi - cNit) = 0,

where V is assumed to satisfy (1.3). Again, our objective here is to investigate the large

sample behavior of these estimators when {i} satisfy (1.4). Of course conceputally the

discussion that follows is similar to that in Section 2 above except for the difficulties
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created by the nonstationarity that is introduced in the problem by {CNi}. We begin by

giving

Theorem 1. Let (1,'2,... be a strictly stationary sequence of r.v's and C be as above

satisfying (LI) and assume (1) above holds. In addition, assume that the following hold:

(L2) The score function 0 is absolutely continuous with its almost everywhere derivative V"

satisfying E 10' (c) I < oo and such that the function

z - E I '(I-z)-¢'() is continuous at zero.

(L3) There exists sequences {AN} and {BN} of pxp matrices such that they are positive

definite for sufficiently large N and satisfy

(i) lIAN'JI- 0, JIB NIl ' 0; (ii) BN C CAR' N IpXp

(iii) max IIA lcNiI f 0, (iv) JIBN1T()Il = 0p(1).i

Then, for every 0 < b < oo,

(3) E s up IBNI [T(U+ANA) - T(fl)] + B N i cNic' (i)AN'All = o(I).

If, in addition, ci = G(r/i), with {1i} satifying (1.4),

(L4) 7P is nondecreasing, 0<E4"(c), E(*'(c)) 2 < ®, and

(L5) N1-(D/ 2 ) max IIBN cNiOII AR CNi[ - 0, with D = D1 of (1.4)
1< i<N

then

(4) B NI" CNi Ni b'(i)'AN = I. Eb'() + p(1)
i v

and

(5) A N(#, -/) = [E¢' ()]- . BN1T(P) + o p(1).

Remark 1. Some comments about the assumptions are in order. The assumptions (L2) and

(L3) are similar to the assumptions (a) and (b) of Theorem 2.1 above. Recall that in the
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linear regression model with independent or weakly dependent errors and with the design

matrix C, the magnitude of T(fl) is of the order 6N := (C C) . However in the current

situation, where { ci} are functions of long range dependent r.v.'s, we can not expect this

magnitude. But we must still have (L3)(ii) in order to stabilize the LHS(4).

In the case of random and stationary design variables, as in Section 2 above, an

analogue of (4) is given by the Ergodic Theorem which does not require the second moment

of the summands. But in the present situation, the LHS of (4) is neither stationary nor

independent. The assumptions (L4), (L5) and (L3)(ii) together with the Gaussianness of

{i} is used to conclude (4) below.

Proof To simplify writing, let a := AN l c N i
, bi := BNlCNi , 1 < i < N. Now, by the

absolute continuity of 7p, the Fubini Theorem and the Cauchy-Schwarz inequality, the

1 laill
LHS(3) _ 2b E I[bi [ [l ail {2jaijj}-1 fiE IV "(e--zb)- ,(c) Idz

i iaill

_ 2b(E IIbiI2  [i[II2 ) x max[(2I1a.I)- I E[1'(-zb) - V"(c)Idz] -4 0,i i i - [ai[ [

by (L2), (L3)((i) - (iii)). Note that by (L3)(ii),

Ebil 2 = tr.Bl CB N 
1 .AN 1C'CAN1 = P = 0(1)

i i

where tr.A := trace A for any matrix A.

Next, let 02(q) := 0'(c) = 0'(G( 1)) and aq := E0 2 (?)Hq(77). In view of (L4), the
00

Hermite expansion of 02 (qi) - E 2 (q) is E 4. H (,7.). Also note that the LHS(4)
q~l

above is now E bia i 020 i ) . Hence V A E AP,

2 OEllA E b.iai[2(ji)-E2(q)] =Ela . i -aiH q(=)l
i i q=
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2

= iaiaj by (2.3),
q=1 q i j

< Var (02(q/)) • IJAf 2 max Ilb iail 2  E Ip(i-j) I
i i j

(6) =max {IB-cNill -IIA-lcil} 2 . O(N2-D),

because E E I p(i-j) = O(N 2 -D) and because
ij

Ilbiai 12 -tr.(biaiabi) = tr.(bibi).(ai a)

-[Ibill 2  Ii ll 2 =-IBnNlICNi 112  IIANlcNilII2.

Therefore (4) follows from the assumption (L4) and (6). The result (5) follows as in Huber

(op cit.). o

Our next objective is to determine BN, using (L3)(iv). Again, to simplify exposition

we shall write {ci} for {CNi}. Proceeding as in Section 2, we observe that V A E AP,

E{A Ec il(ri)}2 = E{A .ciHm(i).m- + EiA. ci[¢l(r1i)-Hm(i). Jm--*.m]}
1 i 1

J J 2
EJ omqi -- ml + E[A E ci  E .q.r/)]2= E{A H(i.).--. +1 4H 2
i [F i qm+1 q. q

AE Cicj pm(i-j) A.q-+ ciA CCA'p(i-j)i j J qm+l "*IJij

(7) m A KN1 A + A KN2 A

where

KN1:= E CJ (i-j), KN2 := E Em E cj pq(i-j).
i ji J



At this point one is clearly persuaded to choose BN ; K and then try to show that

IK' lKN9K~i-f so that we would have (L3)(iv) satisfied. Such a process, though

feasible, appears to be quite involved for general {ci}. However, if we make some further

assumptions on the design variable then this process is less involved and more transparant.

Accordingly, let V ( : ) be a vector of measurable functions on [0,1] to A

satisfying the following conditions:

(al) With D = DIand L as in (1.4), m as the Hermite rank of 5y)
I1 lu -D

0 0
1

(ii) I I yof (u) ok(u) I du < oo, ftk = 12..p
0

(a2) (i) N-D/ 4 max Ij~y(i/N)I -~ 0; (ii) N-l+mD max jj~o(i/N)112 
-0.

1 < i<N I1<i N

(a3) The matrix exists, where

=((gb&)), g~ =1 f Vu) ck(v) Iv-uI L( Iv-uI)du dv, t, k=
0 0

Given such a collection of V's, choose

(8) c. := spiN), 1 <i <N.

Now observe that

N EC ci f (pu) (p (u) du f~ I ~u)v (u)du,
1/IN 0

so that

(9) N- 2+mD C'C 04  because -1 +mD <0.

From (1.4), (8) and the slowly varying property of L it follows that

p p
A KN1 A = E A IA k E E Vji/N) k(j/N) pin(j-i)

t=1lk=1 i j
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p p
=A C CA+2 E E AfA k Z 2Y Vi/N)pk(/N)pm(j- i )

t=l k=1 I < j

2 p P 1 1-u u)(U+V)vmDL(v)dudvN2 m 2 E E Atk f f o)pk ~ ~ Lv

t=1 k=1 0 0

N2-mD A" A.

Now let

(10) BN := N H Y1/2, H = 1-(mD/2), D = D of (1.4).

Our next objective is to show that the second term in the RHS(7) is O(N2H). To

that effect, note that q _ m+1, lp(k)l 1, k ? 1, imply that

(11) IA E qc.pq(j-i) Al _ IAt kI E I t$i/Nl)k(J/N) pm+l(j-i)l.

i<j t=1 k I i< j

Now, since Jp(k)I - 0ask-- D,Vc> 0 3Nf such that Ip(k) cE V k> N. Hence,

V N > N ,

E E I Vti/N)pk(j/N) pm+l(j- 1) _ E E I p$i/N)k(J/N) I
i < j Ilj-i I<N

+ E E I Vt (i/N)(pk(j/N) pm (j-i)
i<j;(j-i)>N(

=TN1 + c.TN2, say.

But, V t, k = 1,...,p,

TN1 S N .N • max 11 (i/N) 112 = o(N 2-mD), by (a2)(ii),
i

TN2  E E k~oI(iIN)ok(JIN)l Ipm (j-i)I
i<j

N2-mD I I (u) (v+u)v-mD L(v)Idu dv = O(N 2-mD), by (al)(i).
0 0
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Hence, V > 0, 3 N such that

(12) LHS(11) o(N 2- m D ) +  O(N 2-mD), V N> N

From (9), (12) and the definition of KN 2 it follows that V N > N

N- 2 +mD IA'KN2 A j Var 01 (q).{ CII CAI + LHS(11)}

<o(1) + cO(1) - 0, by now letting c - 0.

It thus follows that (L3)(iv) holds with BN given by (10). From (L3)(ii) we get

(13) AN = BN1.C" N1-Hfl/2 f0 I

Note that m > 1 =>

max IIAN1 91I z max NmD/ 2 11(i/i)llI _ N D / 4 max IIi/N)ll
i i i

and

Nl - D/ 2 max [IIANIcNill. JIBN CNiII] ; [N-D/ 4 max IIi/N)ll] 2

i i

so that (a2) implies (L3)(ii) and (L5). This shows that all the assumptions of Theorem 1

are satisfied. We now summarize the above discussion as

Theorem 2. Suppose that the linear regression model (1), with errors as in (1.1) and (1.4),

holds. About the design variables {CNi } and the score function ¢ assume that (8), (al)-(a3),

(1.3), (L2) and (L4) hold. Then M - estimators {N} defined as solutions of(2) satisfy

(14) N1-H(/3-fi) = {m!'l Et Ei'()} 1-N-HE fi/N)Hm(1i)'Jm + 0 (1),

where H = (1-mD/2), D = D1 of(1.4).

Remark 2. Observe that if the design generating functions are bounded then O<D< 1/m

guarantees the satisfaction of (al) and (a2). In particular if Vt (u) = u1 , I = 1,...,p, then
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(al) - (a3) are all satisfied. That is, all of these conditions are satisfied in the case of the

pth order polynomials.

An example of an unbounded design is obtained by taking p=l, p1 (u) = u- r, r>O.

Then (al)-(a3) are satisfied as long as r < (1-mD)/2.

Remark 3. An analogue of Remark 2.4 applies here also with obvious modifications.

Consequently, for skew symmetric 0 and symmetric errors the asymptotic distribution of

N-H(WN - #) is p - variate Normal with mean vector 0 and the covariance matrix
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